An Explainable Artificial Intelligence Model Proposed for the Prediction of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Identification of Distinctive Metabolites

Author:

Yagin Fatma1ORCID,Alkhateeb Abedalrhman2ORCID,Raza Ali3ORCID,Samee Nagwan4ORCID,Mahmoud Noha5ORCID,Colak Cemil1ORCID,Yagin Burak1ORCID

Affiliation:

1. Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye

2. Computer Science Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada

3. Institute of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan

4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating illness with a significant global prevalence, affecting over 65 million individuals. It affects various systems, including the immune, neurological, gastrointestinal, and circulatory systems. Studies have shown abnormalities in immune cell types, increased inflammatory cytokines, and brain abnormalities. Further research is needed to identify consistent biomarkers and develop targeted therapies. This study uses explainable artificial intelligence and machine learning techniques to identify discriminative metabolites for ME/CFS. Material and Methods: The model investigates a metabolomics dataset of CFS patients and healthy controls, including 26 healthy controls and 26 ME/CFS patients aged 22–72. The dataset encapsulated 768 metabolites into nine metabolic super-pathways: amino acids, carbohydrates, cofactors, vitamins, energy, lipids, nucleotides, peptides, and xenobiotics. Random forest methods together with other classifiers were applied to the data to classify individuals as ME/CFS patients and healthy individuals. The classification learning algorithms’ performance in the validation step was evaluated using a variety of methods, including the traditional hold-out validation method, as well as the more modern cross-validation and bootstrap methods. Explainable artificial intelligence approaches were applied to clinically explain the optimum model’s prediction decisions. Results: The metabolomics of C-glycosyltryptophan, oleoylcholine, cortisone, and 3-hydroxydecanoate were determined to be crucial for ME/CFS diagnosis. The random forest model outperformed the other classifiers in ME/CFS prediction using the 1000-iteration bootstrapping method, achieving 98% accuracy, precision, recall, F1 score, 0.01 Brier score, and 99% AUC. According to the obtained results, the bootstrap validation approach demonstrated the highest classification outcomes. Conclusion: The proposed model accurately classifies ME/CFS patients based on the selected biomarker candidate metabolites. It offers a clear interpretation of risk estimation for ME/CFS, aiding physicians in comprehending the significance of key metabolomic features within the model.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3