Conditional Covariances for the Signal Lag Measurements in Fluoroscopic Imaging

Author:

Lee EunaeORCID,Kim Dong SikORCID

Abstract

In fluoroscopic imaging, we can acquire X-ray image sequences using a flat-panel dynamic detector. However, lag signals from previous frames are added to the subsequently acquired images and produce lag artifacts. The lag signals also inflate the measured noise power spectrum (NPS) of a detector. In order to correct the measured NPS, the lag correction factor (LCF) is generally used. However, the nonuniform temporal gain (NTG), which is from inconsistent X-ray sources and readout circuits, can significantly distort the LCF measurements. In this paper, we propose a simple scheme to alleviate the NTG problem in order to accurately and efficiently measure the detector LCF. We first theoretically analyze the effects of NTG, especially on the correlation-based LCF measurement methods, where calculating the correlation coefficients are required. In order to remove the biases due to NTG, a notion of conditional covariance is considered for unbiased estimates of the correlation coefficients. Experiments using practical X-ray images acquired from a dynamic detector were conducted. The proposed approach could yield accurate LCF values similarly to the current approaches of the direct and U-L corrections with a low computational complexity. By calculating the correlation coefficients based on conditional covariance, we could obtain accurate LCF values even under the NTG environment. This approach does not require any preprocessing scheme of the direct or U-L correction and can provide further accurate LCF values than the method of IEC62220-1-3 does.

Funder

National Research Foundation of Korea

Hankuk University of Foreign Studies

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference27 articles.

1. The Essential Physics of Medical Imaging;Bushberg,2021

2. Ch. 4 Flat Panel Detectors for Digital Radiography, Handbook of Medical Imaging: Volume 1. Physics and Psychophysics;Rowlands,2000

3. Imaging system with an amorphous silicon linear sensor

4. Hydrogenated Amorphous Silicon

5. Effects of Trapping in a-Si:H Diodes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3