Abstract
A targeted and timely treatment can be a beneficial tool for patients with hematological emergencies (particularly acute leukemias). The key challenges in the early diagnosis of leukemias and related hematological disorders are their symptom-sharing nature and prolonged turnaround time as well as the expertise needed in reporting confirmatory tests. The present study made use of the potential morphological and immature fraction-related parameters (research items or cell population data) generated during complete blood cell count (CBC), through artificial intelligence (AI)/machine learning (ML) predictive modeling for early (at the pre-microscopic level) differentiation of various types of leukemias: acute from chronic as well as myeloid from lymphoid. The routine CBC parameters along with research CBC items from a hematology analyzer in the diagnosis of 1577 study subjects with hematological neoplasms were collected. The statistical and data visualization tools, including heat-map and principal component analysis (PCA,) helped in the evaluation of the predictive capacity of research CBC items. Next, research CBC parameter-driven artificial neural network (ANN) predictive modeling was developed to use the hidden trend (disease’s signature) by increasing the auguring accuracy of these potential morphometric parameters in differentiation of leukemias. The classical statistics for routine and research CBC parameters showed that as a whole, all study items are significantly deviated among various types of leukemias (study groups). The CPD parameter-driven heat-map gave clustering (separation) of myeloid from lymphoid leukemias, followed by the segregation (nodding) of the acute from the chronic class of that particular lineage. Furthermore, acute promyelocytic leukemia (APML) was also well individuated from other types of acute myeloid leukemia (AML). The PCA plot guided by research CBC items at notable variance vindicated the aforementioned findings of the CPD-driven heat-map. Through training of ANN predictive modeling, the CPD parameters successfully differentiate the chronic myeloid leukemia (CML), AML, APML, acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), and other related hematological neoplasms with AUC values of 0.937, 0.905, 0.805, 0.829, 0.870, and 0.789, respectively, at an agreeably significant (10.6%) false prediction rate. Overall practical results of using our ANN model were found quite satisfactory with values of 83.1% and 89.4.7% for training and testing datasets, respectively. We proposed that research CBC parameters could potentially be used for early differentiation of leukemias in the hematology–oncology unit. The CPD-driven ANN modeling is a novel practice that substantially strengthens the predictive potential of CPD items, allowing the clinicians to be confident about the typical trend of the “disease fingerprint” shown by these automated potential morphometric items.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献