Generalization Challenges in Drug-Resistant Tuberculosis Detection from Chest X-rays

Author:

Karki ManoharORCID,Kantipudi KarthikORCID,Yang FengORCID,Yu Hang,Wang Yi Xiang J.ORCID,Yaniv ZivORCID,Jaeger StefanORCID

Abstract

Classification of drug-resistant tuberculosis (DR-TB) and drug-sensitive tuberculosis (DS-TB) from chest radiographs remains an open problem. Our previous cross validation performance on publicly available chest X-ray (CXR) data combined with image augmentation, the addition of synthetically generated and publicly available images achieved a performance of 85% AUC with a deep convolutional neural network (CNN). However, when we evaluated the CNN model trained to classify DR-TB and DS-TB on unseen data, significant performance degradation was observed (65% AUC). Hence, in this paper, we investigate the generalizability of our models on images from a held out country’s dataset. We explore the extent of the problem and the possible reasons behind the lack of good generalization. A comparison of radiologist-annotated lesion locations in the lung and the trained model’s localization of areas of interest, using GradCAM, did not show much overlap. Using the same network architecture, a multi-country classifier was able to identify the country of origin of the X-ray with high accuracy (86%), suggesting that image acquisition differences and the distribution of non-pathological and non-anatomical aspects of the images are affecting the generalization and localization of the drug resistance classification model as well. When CXR images were severely corrupted, the performance on the validation set was still better than 60% AUC. The model overfitted to the data from countries in the cross validation set but did not generalize to the held out country. Finally, we applied a multi-task based approach that uses prior TB lesions location information to guide the classifier network to focus its attention on improving the generalization performance on the held out set from another country to 68% AUC.

Funder

Office of the Secretary Patient-Centered528 Outcomes Research Trust Fund

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantically redundant training data removal and deep model classification performance: A study with chest X-rays;Computerized Medical Imaging and Graphics;2024-07

2. Automated Pulmonary Tuberculosis Severity Assessment on Chest X-rays;Journal of Imaging Informatics in Medicine;2024-04-08

3. Tuberculosis chest x-ray image retrieval system using deep learning based biomarker predictions;Medical Imaging 2024: Imaging Informatics for Healthcare, Research, and Applications;2024-04-02

4. Training of U-Net on Chest X-Rays to Segment Lungs and Detect Tuberculosis;International Journal of Advanced Research in Science, Communication and Technology;2023-08-25

5. Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification;Frontiers in Medicine;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3