Weakly Supervised Ternary Stream Data Augmentation Fine-Grained Classification Network for Identifying Acute Lymphoblastic Leukemia

Author:

Liu Yunfei,Chen Pu,Zhang JunranORCID,Liu Nian,Liu YanORCID

Abstract

Due to the high incidence of acute lymphoblastic leukemia (ALL) worldwide as well as its rapid and fatal progression, timely microscopy screening of peripheral blood smears is essential for the rapid diagnosis of ALL. However, screening manually is time-consuming and tedious and may lead to missed or misdiagnosis due to subjective bias; on the other hand, artificially intelligent diagnostic algorithms are constrained by the limited sample size of the data and are prone to overfitting, resulting in limited applications. Conventional data augmentation is commonly adopted to expand the amount of training data, avoid overfitting, and improve the performance of deep models. However, in practical applications, random data augmentation, such as random image cropping or erasing, is difficult to realistically occur in specific tasks and may instead introduce tremendous background noises that modify actual distribution of data, thereby degrading model performance. In this paper, to assist in the early and accurate diagnosis of acute lymphoblastic leukemia, we present a ternary stream-driven weakly supervised data augmentation classification network (WT-DFN) to identify lymphoblasts in a fine-grained scale using microscopic images of peripheral blood smears. Concretely, for each training image, we first generate attention maps to represent the distinguishable part of the target by weakly supervised learning. Then, guided by these attention maps, we produce the other two streams via attention cropping and attention erasing to obtain the fine-grained distinctive features. The proposed WT-DFN improves the classification accuracy of the model from two aspects: (1) in the images can be seen details since cropping attention regions provide the accurate location of the object, which ensures our model looks at the object closer and discovers certain detailed features; (2) images can be seen more since erasing attention mechanism forces the model to extract more discriminative parts’ features. Validation suggests that the proposed method is capable of addressing the high intraclass variances located in lymphocyte classes, as well as the low interclass variances between lymphoblasts and other normal or reactive lymphocytes. The proposed method yields the best performance on the public dataset and the real clinical dataset among competitive methods.

Funder

The National Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3