A Holistic Approach to Identify and Classify COVID-19 from Chest Radiographs, ECG, and CT-Scan Images Using ShuffleNet Convolutional Neural Network
-
Published:2023-01-03
Issue:1
Volume:13
Page:162
-
ISSN:2075-4418
-
Container-title:Diagnostics
-
language:en
-
Short-container-title:Diagnostics
Author:
Ullah Naeem1, Khan Javed2ORCID, El-Sappagh Shaker34ORCID, El-Rashidy Nora5ORCID, Khan Mohammad6ORCID
Affiliation:
1. Department of Software Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan 2. Department of Software Engineering, University of Science and Technology Bannu, Bannu 28100, Pakistan 3. Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt 4. Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha 13518, Egypt 5. Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheiksh University, Kafr Elsheikh 33516, Egypt 6. Department of Computer Software Engineering, University of Engineering and Technology Mardan, Mardan 23200, Pakistan
Abstract
Early and precise COVID-19 identification and analysis are pivotal in reducing the spread of COVID-19. Medical imaging techniques, such as chest X-ray or chest radiographs, computed tomography (CT) scan, and electrocardiogram (ECG) trace images are the most widely known for early discovery and analysis of the coronavirus disease (COVID-19). Deep learning (DL) frameworks for identifying COVID-19 positive patients in the literature are limited to one data format, either ECG or chest radiograph images. Moreover, using several data types to recover abnormal patterns caused by COVID-19 could potentially provide more information and restrict the spread of the virus. This study presents an effective COVID-19 detection and classification approach using the Shufflenet CNN by employing three types of images, i.e., chest radiograph, CT-scan, and ECG-trace images. For this purpose, we performed extensive classification experiments with the proposed approach using each type of image. With the chest radiograph dataset, we performed three classification experiments at different levels of granularity, i.e., binary, three-class, and four-class classifications. In addition, we performed a binary classification experiment with the proposed approach by classifying CT-scan images into COVID-positive and normal. Finally, utilizing the ECG-trace images, we conducted three experiments at different levels of granularity, i.e., binary, three-class, and five-class classifications. We evaluated the proposed approach with the baseline COVID-19 Radiography Database, SARS-CoV-2 CT-scan, and ECG images dataset of cardiac and COVID-19 patients. The average accuracy of 99.98% for COVID-19 detection in the three-class classification scheme using chest radiographs, optimal accuracy of 100% for COVID-19 detection using CT scans, and average accuracy of 99.37% for five-class classification scheme using ECG trace images have proved the efficacy of our proposed method over the contemporary methods. The optimal accuracy of 100% for COVID-19 detection using CT scans and the accuracy gain of 1.54% (in the case of five-class classification using ECG trace images) from the previous approach, which utilized ECG images for the first time, has a major contribution to improving the COVID-19 prediction rate in early stages. Experimental findings demonstrate that the proposed framework outperforms contemporary models. For example, the proposed approach outperforms state-of-the-art DL approaches, such as Squeezenet, Alexnet, and Darknet19, by achieving the accuracy of 99.98 (proposed method), 98.29, 98.50, and 99.67, respectively.
Subject
Clinical Biochemistry
Reference68 articles.
1. Ullah, N., Khan, J.A., Almakdi, S., Khan, M.S., Alshehri, M., Alboaneen, D., and Raza, A. (2022). A novel CovidDetNet deep learning model for effective COVID-19 infection detection using chest radiograph images. Appl. Sci., 12. 2. Ullah, N., and Javed, A. (2021, January 13–14). Deep Features Comparative Analysis for COVID-19 Detection from the Chest Radiograph Images. Proceedings of the 2021 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan. 3. Transmission routes of 2019-ncov and controls in dental practice;Peng;Int. J. Oral Sci.,2020 4. (2022, September 12). Available online: https://covid19.who.int/. 5. World Health Organization (2020, May 15). Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases March 2, 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|