Comparison of Diagnostic Performance in Mammography Assessment: Radiologist with Reference to Clinical Information Versus Standalone Artificial Intelligence Detection

Author:

Choi Won Jae,An Jin KyungORCID,Woo Jeong JooORCID,Kwak Hee Yong

Abstract

We compared diagnostic performances between radiologists with reference to clinical information and standalone artificial intelligence (AI) detection of breast cancer on digital mammography. This study included 392 women (average age: 57.3 ± 12.1 years, range: 30–94 years) diagnosed with malignancy between January 2010 and June 2021 who underwent digital mammography prior to biopsy. Two radiologists assessed mammographic findings based on clinical symptoms and prior mammography. All mammographies were analyzed via AI. Breast cancer detection performance was compared between radiologists and AI based on how the lesion location was concordant between each analysis method (radiologists or AI) and pathological results. Kappa coefficient was used to measure the concordance between radiologists or AI analysis and pathology results. Binominal logistic regression analysis was performed to identify factors influencing the concordance between radiologists’ analysis and pathology results. Overall, the concordance was higher in radiologists’ diagnosis than on AI analysis (kappa coefficient: 0.819 vs. 0.698). Impact of prior mammography (odds ratio (OR): 8.55, p < 0.001), clinical symptom (OR: 5.49, p < 0.001), and fatty breast density (OR: 5.18, p = 0.008) were important factors contributing to the concordance of lesion location between radiologists’ diagnosis and pathology results.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference38 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3