Abstract
Lung cancer is the leading cause of cancer-related deaths around the world, the most common type of which is non-small-cell lung cancer (NSCLC). Computed tomography (CT) is required for patients with NSCLC, but often involves diagnostic issues and large intra- and interobserver variability. The anatomic data obtained using CT can be supplemented by the metabolic data obtained using fluorodeoxyglucose F 18 (FDG) positron emission tomography (PET); therefore, the use of FDG-PET/CT for staging NSCLC is recommended, as it provides more accuracy than either modality alone. Furthermore, FDG-PET/magnetic resonance imaging (MRI) provides useful information on metabolic activity and tumor cellularity, and has become increasingly popular. A number of studies have described FDG-PET/MRI as having a high diagnostic performance in NSCLC staging. Therefore, multidimensional functional imaging using FDG-PET/MRI is promising for evaluating the activity of the intratumoral environment. Radiomics is the quantitative extraction of imaging features from medical scans. The chief advantages of FDG-PET/CT radiomics are the ability to capture information beyond the capabilities of the human eye, non-invasiveness, the (virtually) real-time response, and full-field analysis of the lesion. This review summarizes the recent advances in FDG-PET imaging within the field of clinical oncology in NSCLC, with a focus on surgery and prognostication, and investigates the site-specific strengths and limitations of FDG-PET/CT. Overall, the goal of treatment for NSCLC is to provide the best opportunity for long-term survival; therefore, FDG-PET/CT is expected to play an increasingly important role in deciding the appropriate treatment for such patients.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献