Design, Development, and Multi-Characterization of an Integrated Clinical Transrectal Ultrasound and Photoacoustic Device for Human Prostate Imaging

Author:

Agrawal SumitORCID,Johnstonbaugh Kerrick,Clark Joseph Y.,Raman Jay D.,Wang Xueding,Kothapalli Sri-RajasekharORCID

Abstract

The standard diagnostic procedure for prostate cancer (PCa) is transrectal ultrasound (TRUS)-guided needle biopsy. However, due to the low sensitivity of TRUS to cancerous tissue in the prostate, small yet clinically significant tumors can be missed. Magnetic resonance imaging (MRI) with TRUS fusion biopsy has recently been introduced as a way to improve the identification of clinically significant PCa in men. However, the spatial errors in coregistering the preprocedural MRI with the real-time TRUS causes false negatives. A real-time and intraprocedural imaging modality that can sensitively detect PCa tumors and, more importantly, differentiate aggressive from nonaggressive tumors could largely improve the guidance of biopsy sampling to improve diagnostic accuracy and patient risk stratification. In this work, we seek to fill this long-standing gap in clinical diagnosis of PCa via the development of a dual-modality imaging device that integrates the emerging photoacoustic imaging (PAI) technique with the established TRUS for improved guidance of PCa needle biopsy. Unlike previously published studies on the integration of TRUS with PAI capabilities, this work introduces a novel approach for integrating a focused light delivery mechanism with a clinical-grade commercial TRUS probe, while assuring much-needed ease of operation in the transrectal space. We further present the clinical potential of our device by (i) performing rigorous characterization studies, (ii) examining the acoustic and optical safety parameters for human prostate imaging, and (iii) demonstrating the structural and functional imaging capabilities using deep-tissue-mimicking phantoms. Our TRUSPA experimental studies demonstrated a field-of-view in the range of 130 to 150 degrees and spatial resolutions in the range of 300 μm to 400 μm at a soft tissue imaging depth of 5 cm.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3