Efficient Bone Metastasis Diagnosis in Bone Scintigraphy Using a Fast Convolutional Neural Network Architecture

Author:

Papandrianos Nikolaos,Papageorgiou ElpinikiORCID,Anagnostis Athanasios,Papageorgiou KonstantinosORCID

Abstract

(1) Background: Bone metastasis is among diseases that frequently appear in breast, lung and prostate cancer; the most popular imaging method of screening in metastasis is bone scintigraphy and presents very high sensitivity (95%). In the context of image recognition, this work investigates convolutional neural networks (CNNs), which are an efficient type of deep neural networks, to sort out the diagnosis problem of bone metastasis on prostate cancer patients; (2) Methods: As a deep learning model, CNN is able to extract the feature of an image and use this feature to classify images. It is widely applied in medical image classification. This study is devoted to developing a robust CNN model that efficiently and fast classifies bone scintigraphy images of patients suffering from prostate cancer, by determining whether or not they develop metastasis of prostate cancer. The retrospective study included 778 sequential male patients who underwent whole-body bone scans. A nuclear medicine physician classified all the cases into three categories: (a) benign, (b) malignant and (c) degenerative, which were used as gold standard; (3) Results: An efficient and fast CNN architecture was built, based on CNN exploration performance, using whole body scintigraphy images for bone metastasis diagnosis, achieving a high prediction accuracy. The results showed that the method is sufficiently precise when it comes to differentiate a bone metastasis case from other either degenerative changes or normal tissue cases (overall classification accuracy = 91.61% ± 2.46%). The accuracy of prostate patient cases identification regarding normal, malignant and degenerative changes was 91.3%, 94.7% and 88.6%, respectively. To strengthen the outcomes of this study the authors further compared the best performing CNN method to other popular CNN architectures for medical imaging, like ResNet50, VGG16, GoogleNet and MobileNet, as clearly reported in the literature; and (4) Conclusions: The remarkable outcome of this study is the ability of the method for an easier and more precise interpretation of whole-body images, with effects on the diagnosis accuracy and decision making on the treatment to be applied.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference51 articles.

1. Metastatic bone disease: clinical features, pathophysiology and treatment strategies

2. Diagnostic methods for detection of bone metastases

3. Bone metastases: an overview

4. Management of bone metastases in cancer: A review

5. Bone Metastases in Advanced Prostate Cancer: Management. UpToDate Websitehttps://www.uptodate.com/contents/bone-metastases-in-advancedprostate-cancer-management

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3