Image Quality and Diagnostic Performance of Accelerated 2D Hip MRI with Deep Learning Reconstruction Based on a Deep Iterative Hierarchical Network

Author:

Herrmann Judith1ORCID,Afat Saif1ORCID,Gassenmaier Sebastian1ORCID,Koerzdoerfer Gregor2ORCID,Lingg Andreas1ORCID,Almansour Haidara1,Nickel Dominik2ORCID,Werner Sebastian1

Affiliation:

1. Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany

2. MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany

Abstract

Objectives: Hip MRI using standard multiplanar sequences requires long scan times. Accelerating MRI is accompanied by reduced image quality. This study aimed to compare standard two-dimensional (2D) turbo spin echo (TSE) sequences with accelerated 2D TSE sequences with deep learning (DL) reconstruction (TSEDL) for routine clinical hip MRI at 1.5 and 3 T in terms of feasibility, image quality, and diagnostic performance. Material and Methods: In this prospective, monocentric study, TSEDL was implemented clinically and evaluated in 14 prospectively enrolled patients undergoing a clinically indicated hip MRI at 1.5 and 3T between October 2020 and May 2021. Each patient underwent two examinations: For the first exam, we used standard sequences with generalized autocalibrating partial parallel acquisition reconstruction (TSES). For the second exam, we implemented prospectively undersampled TSE sequences with DL reconstruction (TSEDL). Two radiologists assessed the TSEDL and TSES regarding image quality, artifacts, noise, edge sharpness, diagnostic confidence, and delineation of anatomical structures using an ordinal five-point Likert scale (1 = non-diagnostic; 2 = poor; 3 = moderate; 4 = good; 5 = excellent). Both sequences were compared regarding the detection of common pathologies of the hip. Comparative analyses were conducted to assess the differences between TSEDL and TSES. Results: Compared with TSES, TSEDL was rated to be significantly superior in terms of image quality (p ≤ 0.020) with significantly reduced noise (p ≤ 0.001) and significantly improved edge sharpness (p = 0.003). No difference was found between TSES and TSEDL concerning the extent of artifacts, diagnostic confidence, or the delineation of anatomical structures (p > 0.05). Example acquisition time reductions for the TSE sequences of 52% at 3 Tesla and 70% at 1.5 Tesla were achieved. Conclusion: TSEDL of the hip is clinically feasible, showing excellent image quality and equivalent diagnostic performance compared with TSES, reducing the acquisition time significantly.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3