Diagnostic Utility of Double-Echo Steady-State (DESS) MRI for Fracture and Bone Marrow Edema Detection in Adolescent Lumbar Spondylolysis

Author:

Kitakado Atsushi1,Fukuda Takeshi2ORCID,Kobayashi Jiro1,Ojiri Hiroya2ORCID

Affiliation:

1. Department of Radiology, Medical Scanning, 6-10-1 Nishi-Shinjuku-ku, Tokyo 160-0023, Japan

2. Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan

Abstract

To evaluate the ability of double-echo steady-state (DESS) MRI to detect pars interarticularis fracture and bone marrow edema (BME) in spondylolysis, 500 lumber pars interarticularis from 50 consecutive patients (38 males and 12 females, mean age 14.2 ± 3.28 years) with spondylolysis who underwent both MRI and CT within 1 week were evaluated. All participants were young athletes who complained of lower back pain. Fractures were classified into four grades and CT was used as a reference; BME was evaluated in a binary manner and STIR was used as a reference. The diagnostic performance of fractures on DESS and T1WI, and BME on DESS was assessed by two radiologists independently. For fracture detection, DESS showed high diagnostic performance at a sensitivity of 94%, specificity of 99.5%, and accuracy of 98.8%, whereas T1WI showed lower sensitivity (70.1%). Fracture grading performed by DESS showed excellent agreement with CT grading (Kappa = 0.9). For BME, the sensitivity, specificity, and accuracy of DESS were 96.5%, 100%, and 99.6%, respectively. The inter-rater agreement of DESS for fracture and BME was 0.8 and 0.85, respectively. However, the inter-rater agreement for fracture on T1WI was 0.52. DESS had high diagnostic performance for fracture and BME in pars interarticularis. In conclusion, DESS had potential to detect all critical imaging findings in spondylolysis and may replace the role of CT.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3