Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions

Author:

Baig Abdul RaufORCID,Abbas QaisarORCID,Almakki Riyad,Ibrahim Mostafa E. A.ORCID,AlSuwaidan LulwahORCID,Ahmed Alaa E. S.

Abstract

Skin cancer develops due to the unusual growth of skin cells. Early detection is critical for the recognition of multiclass pigmented skin lesions (PSLs). At an early stage, the manual work by ophthalmologists takes time to recognize the PSLs. Therefore, several “computer-aided diagnosis (CAD)” systems are developed by using image processing, machine learning (ML), and deep learning (DL) techniques. Deep-CNN models outperformed traditional ML approaches in extracting complex features from PSLs. In this study, a special transfer learning (TL)-based CNN model is suggested for the diagnosis of seven classes of PSLs. A novel approach (Light-Dermo) is developed that is based on a lightweight CNN model and applies the channelwise attention (CA) mechanism with a focus on computational efficiency. The ShuffleNet architecture is chosen as the backbone, and squeeze-and-excitation (SE) blocks are incorporated as the technique to enhance the original ShuffleNet architecture. Initially, an accessible dataset with 14,000 images of PSLs from seven classes is used to validate the Light-Dermo model. To increase the size of the dataset and control its imbalance, we have applied data augmentation techniques to seven classes of PSLs. By applying this technique, we collected 28,000 images from the HAM10000, ISIS-2019, and ISIC-2020 datasets. The outcomes of the experiments show that the suggested approach outperforms compared techniques in many cases. The most accurately trained model has an accuracy of 99.14%, a specificity of 98.20%, a sensitivity of 97.45%, and an F1-score of 98.1%, with fewer parameters compared to state-of-the-art DL models. The experimental results show that Light-Dermo assists the dermatologist in the better diagnosis of PSLs. The Light-Dermo code is available to the public on GitHub so that researchers can use it and improve it.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble machine learning framework for predicting maternal health risk during pregnancy;Scientific Reports;2024-09-14

2. A survey of recent advances in analysis of skin images;Evolutionary Intelligence;2024-08-25

3. Multi-view compression and collaboration for skin disease diagnosis;Expert Systems with Applications;2024-08

4. A survey on computer vision approaches for automated classification of skin diseases;Multimedia Tools and Applications;2024-05-03

5. Classification of Multi-Class Skin Cancer using Deep Learning Algorithm;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3