Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) for the Diagnosis of Thalassemia

Author:

Hassan Syahzuwan12,Bahar Rosnah1,Johan Muhammad Farid1ORCID,Mohamed Hashim Ezzeddin Kamil3,Abdullah Wan Zaidah1,Esa Ezalia2,Abdul Hamid Faidatul Syazlin2,Zulkafli Zefarina1ORCID

Affiliation:

1. Department of Hematology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia

2. Institute for Medical Research, Shah Alam 40170, Malaysia

3. School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia

Abstract

Thalassemia is one of the most heterogeneous diseases, with more than a thousand mutation types recorded worldwide. Molecular diagnosis of thalassemia by conventional PCR-based DNA analysis is time- and resource-consuming owing to the phenotype variability, disease complexity, and molecular diagnostic test limitations. Moreover, genetic counseling must be backed-up by an extensive diagnosis of the thalassemia-causing phenotype and the possible genetic modifiers. Data coming from advanced molecular techniques such as targeted sequencing by next-generation sequencing (NGS) and third-generation sequencing (TGS) are more appropriate and valuable for DNA analysis of thalassemia. While NGS is superior at variant calling to TGS thanks to its lower error rates, the longer reads nature of the TGS permits haplotype-phasing that is superior for variant discovery on the homologous genes and CNV calling. The emergence of many cutting-edge machine learning-based bioinformatics tools has improved the accuracy of variant and CNV calling. Constant improvement of these sequencing and bioinformatics will enable precise thalassemia detections, especially for the CNV and the homologous HBA and HBG genes. In conclusion, laboratory transiting from conventional DNA analysis to NGS or TGS and following the guidelines towards a single assay will contribute to a better diagnostics approach of thalassemia.

Funder

Ministry of Higher Education Malaysia for Fundamental Research

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3