Abstract
As a neurodegenerative disorder, Parkinson’s disease (PD) affects the nerve cells of the human brain. Early detection and treatment can help to relieve the symptoms of PD. Recent PD studies have extracted the features from vocal disorders as a harbinger for PD detection, as patients face vocal changes and impairments at the early stages of PD. In this study, two hybrid models based on a Support Vector Machine (SVM) integrating with a Principal Component Analysis (PCA) and a Sparse Autoencoder (SAE) are proposed to detect PD patients based on their vocal features. The first model extracted and reduced the principal components of vocal features based on the explained variance of each feature using PCA. For the first time, the second model used a novel Deep Neural Network (DNN) of an SAE, consisting of multiple hidden layers with L1 regularization to compress the vocal features into lower-dimensional latent space. In both models, reduced features were fed into the SVM as inputs, which performed classification by learning hyperplanes, along with projecting the data into a higher dimension. An F1-score, a Mathews Correlation Coefficient (MCC), and a Precision-Recall curve were used, along with accuracy to evaluate the proposed models due to highly imbalanced data. With its highest accuracy of 0.935, F1-score of 0.951, and MCC value of 0.788, the probing results show that the proposed model of the SAE-SVM surpassed not only the former model of the PCA-SVM and other standard models including Multilayer Perceptron (MLP), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), and Random Forest (RF), but also surpassed two recent studies using the same dataset. Oversampling and balancing the dataset with SMOTE boosted the performance of the models.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning and Sound Processing in Vocal Disease Detection;Computer Science Journal of Moldova;2024-07
2. Voice Features Based Early Diagnosis of Parkinson Neurodegenerative Disorder Using CatBoost and Light GBM Algorithms;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28
3. Analysis of voice recordings features for Classification of Parkinson's Disease;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08
4. Parkinson classification neural network with mass algorithm for processing speech signals;Neural Computing and Applications;2024-03-05
5. Analysis Of Feature Noise On Standard SVM With Linear Kernel;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24