Development and Validation of a Deep-Learning-Based Algorithm for Detecting and Classifying Metallic Implants in Abdominal and Spinal CT Topograms

Author:

Choi Moon-Hyung1ORCID,Jung Joon-Yong2,Peng Zhigang3,Grosskopf Stefan4ORCID,Suehling Michael4,Hofmann Christian4,Pak Seongyong5

Affiliation:

1. Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea

2. Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

3. Siemens Medical Solutions USA, Inc., Malvern, PA 19355, USA

4. Siemens Healthcare GmbH, Computed Tomography, 91301 Forchheim, Germany

5. Siemens Healthineers Ltd., Seoul 06620, Republic of Korea

Abstract

Purpose: To develop and validate a deep-learning-based algorithm (DLA) that is designed to segment and classify metallic objects in topograms of abdominal and spinal CT. Methods: DLA training for implant segmentation and classification was based on a U-net-like architecture with 263 annotated hip implant topograms and 2127 annotated spine implant topograms. The trained DLA was validated with internal and external datasets. Two radiologists independently reviewed the external dataset consisting of 2178 abdomen anteroposterior (AP) topograms and 515 spine AP and lateral topograms, all collected in a consecutive manner. Sensitivity and specificity were calculated per pixel row and per patient. Pairwise intersection over union (IoU) was also calculated between the DLA and the two radiologists. Results: The performance parameters of the DLA were consistently >95% in internal validation per pixel row and per patient. DLA can save 27.4% of reconstruction time on average in patients with metallic implants compared to the existing iMAR. The sensitivity and specificity of the DLA during external validation were greater than 90% for the detection of spine implants on three different topograms and for the detection of hip implants on abdominal AP and spinal AP topograms. The IoU was greater than 0.9 between the DLA and the radiologists. However, the DLA training could not be performed for hip implants on spine lateral topograms. Conclusions: A prototype DLA to detect metallic implants of the spine and hip on abdominal and spinal CT topograms improves the scan workflow with good performance for both spine and hip implants.

Funder

Siemens Healthineers Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3