Advancing Dermatological Diagnostics: Interpretable AI for Enhanced Skin Lesion Classification

Author:

Metta Carlo1ORCID,Beretta Andrea1,Guidotti Riccardo2,Yin Yuan3,Gallinari Patrick3,Rinzivillo Salvatore1ORCID,Giannotti Fosca4

Affiliation:

1. Institute of Information Science and Technologies (ISTI-CNR), 56124 Pisa, Italy

2. Department of Computer Science, Universitá di Pisa, 56124 Pisa, Italy

3. Laboratoire d’Informatique de Paris 6, Sorbonne Université, 75005 Paris, Italy

4. Faculty of Sciences, Scuola Normale Superiore di Pisa, 56126 Paris, Italy

Abstract

A crucial challenge in critical settings like medical diagnosis is making deep learning models used in decision-making systems interpretable. Efforts in Explainable Artificial Intelligence (XAI) are underway to address this challenge. Yet, many XAI methods are evaluated on broad classifiers and fail to address complex, real-world issues, such as medical diagnosis. In our study, we focus on enhancing user trust and confidence in automated AI decision-making systems, particularly for diagnosing skin lesions, by tailoring an XAI method to explain an AI model’s ability to identify various skin lesion types. We generate explanations using synthetic images of skin lesions as examples and counterexamples, offering a method for practitioners to pinpoint the critical features influencing the classification outcome. A validation survey involving domain experts, novices, and laypersons has demonstrated that explanations increase trust and confidence in the automated decision system. Furthermore, our exploration of the model’s latent space reveals clear separations among the most common skin lesion classes, a distinction that likely arises from the unique characteristics of each class and could assist in correcting frequent misdiagnoses by human professionals.

Funder

SoBigData++

HumanE AI Net

CREXDATA

XAI

TAILOR

NextGenerationEU programme under the funding schemes PNRR-PE-AI scheme (M4C2, investment 1.3, line on AI) FAIR

SoBigData.it—Strengthening the Italian RI for Social Mining and Big Data Analytics

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3