Sepsis Trajectory Prediction Using Privileged Information and Continuous Physiological Signals

Author:

Alge Olivia P.1ORCID,Gryak Jonathan2,VanEpps J. Scott34567ORCID,Najarian Kayvan134789

Affiliation:

1. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA

2. Department of Computer Science, Queens College, The City University of New York, Flushing, NY 11367, USA

3. Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA

4. Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA

5. Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA

6. Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

7. The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI 48109, USA

8. Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

9. Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

The aim of this research is to apply the learning using privileged information paradigm to sepsis prognosis. We used signal processing of electrocardiogram and electronic health record data to construct support vector machines with and without privileged information to predict an increase in a given patient’s quick-Sequential Organ Failure Assessment score, using a retrospective dataset. We applied this to both a small, critically ill cohort and a broader cohort of patients in the intensive care unit. Within the smaller cohort, privileged information proved helpful in a signal-informed model, and across both cohorts, electrocardiogram data proved to be informative to creating the prediction. Although learning using privileged information did not significantly improve results in this study, it is a paradigm worth studying further in the context of using signal processing for sepsis prognosis.

Funder

NSF

Publisher

MDPI AG

Reference16 articles.

1. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3);Singer;JAMA,2016

2. Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level;Paoli;Crit. Care Med.,2018

3. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3);Seymour;JAMA,2016

4. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021;Evans;Crit. Care Med.,2021

5. Alge, O.P., Pickard, J., Zhang, W., Cheng, S., Derksen, H., Omenn, G.S., Gryak, J., VanEpps, J.S., and Najarian, K. (Sci. Rep., 2021). Continuous Sepsis Trajectory Prediction using Tensor-Reduced Physiological Signals, Sci. Rep., in review.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3