Genotyping of Single Nucleotide Polymorphisms Using Allele-Specific qPCR Producing Amplicons of Small Sizes Directly from Crude Serum Isolated from Capillary Blood by a Hand-Powered Paper Centrifuge

Author:

Barra GustavoORCID,Santa Rita Ticiane,Jardim Daniella,Mesquita Pedro,Nobre Camila,Jácomo Rafael,Abdalla Nery Lídia

Abstract

The cell-free genomic DNA (gDNA) concentration in serum ranges from 1500 to 7500 copies/mL within 2 h after phlebotomy (6–24 times the concentration observed in plasma). Here, we aimed to evaluate the gDNA size distribution in serum with time after coagulation and to test if crude serum can be directly used as a source of gDNA for qPCR. Next, we investigated if single nucleotide polymorphisms (SNPs) could be genotyped directly from the crude serum isolated from capillary blood using a hand-powered paper centrifuge. All tested PCR targets (65, 100, 202 and 688 base pairs) could be successfully amplified from DNA extracted from serum, irrespective of their amplicon size. The observed qPCR quantitation cycles suggested that the genomic DNA yield increased in serum with incubation at room temperature. Additionally, only 65 and 101 base pair qPCR targets could be amplified from crude serum soon after the coagulation. Incubation for 4 days at room temperature was necessary for the amplification of PCR targets of 202 base pairs. The 688 base pair qPCR target could not be amplified from serum directly. Lastly, serum was successfully separated from capillary blood using the proposed paper centrifuge and the genotypes were assigned by testing the crude serum using allele-specific qPCR, producing small amplicon sizes in complete agreement with the genotypes assigned by testing the DNA extracted from whole blood. The serum can be used directly as the template in qPCR for SNP genotyping, especially if small amplicon sizes are applied. This shortcut in the SNP genotyping process could further molecular point-of-care diagnostics due to elimination of the DNA extraction step.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3