Efficiently Classifying Lung Sounds through Depthwise Separable CNN Models with Fused STFT and MFCC Features

Author:

Jung Shing-YunORCID,Liao Chia-HungORCID,Wu Yu-Sheng,Yuan Shyan-MingORCID,Sun Chuen-Tsai

Abstract

Lung sounds remain vital in clinical diagnosis as they reveal associations with pulmonary pathologies. With COVID-19 spreading across the world, it has become more pressing for medical professionals to better leverage artificial intelligence for faster and more accurate lung auscultation. This research aims to propose a feature engineering process that extracts the dedicated features for the depthwise separable convolution neural network (DS-CNN) to classify lung sounds accurately and efficiently. We extracted a total of three features for the shrunk DS-CNN model: the short-time Fourier-transformed (STFT) feature, the Mel-frequency cepstrum coefficient (MFCC) feature, and the fused features of these two. We observed that while DS-CNN models trained on either the STFT or the MFCC feature achieved an accuracy of 82.27% and 73.02%, respectively, fusing both features led to a higher accuracy of 85.74%. In addition, our method achieved 16 times higher inference speed on an edge device and only 0.45% less accuracy than RespireNet. This finding indicates that the fusion of the STFT and MFCC features and DS-CNN would be a model design for lightweight edge devices to achieve accurate AI-aided detection of lung diseases.

Funder

Research and implementation development of a huge data security collection system for ma-chines based on edge computing, from the AI Center, Tung-Hai University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3