A CT-Based Clinical, Radiological and Radiomic Machine Learning Model for Predicting Malignancy of Solid Renal Tumors (UroCCR-75)

Author:

Garnier Cassandre1,Ferrer Loïc2ORCID,Vargas Jennifer2,Gallinato Olivier2,Jambon Eva1ORCID,Le Bras Yann1,Bernhard Jean-Christophe3ORCID,Colin Thierry2,Grenier Nicolas1ORCID,Marcelin Clément1ORCID

Affiliation:

1. Department of Imaging and Interventional Radiology, Hôpital Pellegrin, Place Amélie-Raba-Léon, 33076 Bordeaux, France

2. SOPHiA GENETICS, Multimodal Research, Cité de la Photonique—Bâtiment GIENAH, 11 Avenue de Canteranne, 33600 Pessac, France

3. Department of Urology, Hôpital Pellegrin, Place Amélie-Raba-Léon, 33076 Bordeaux, France

Abstract

Background: Differentiating benign from malignant renal tumors is important for patient management, and it may be improved by quantitative CT features analysis including radiomic. Purpose: This study aimed to compare performances of machine learning models using bio-clinical, conventional radiologic and 3D-radiomic features for the differentiation of benign and malignant solid renal tumors using pre-operative multiphasic contrast-enhanced CT examinations. Materials and methods: A unicentric retrospective analysis of prospectively acquired data from a national kidney cancer database was conducted between January 2016 and December 2020. Histologic findings were obtained by robotic-assisted partial nephrectomy. Lesion images were semi-automatically segmented, allowing for a 3D-radiomic features extraction in the nephrographic phase. Conventional radiologic parameters such as shape, content and enhancement were combined in the analysis. Biological and clinical features were obtained from the national database. Eight machine learning (ML) models were trained and validated using a ten-fold cross-validation. Predictive performances were evaluated comparing sensitivity, specificity, accuracy and AUC. Results: A total of 122 patients with 132 renal lesions, including 111 renal cell carcinomas (RCCs) (111/132, 84%) and 21 benign tumors (21/132, 16%), were evaluated (58 +/− 14 years, men 74%). Unilaterality (100/111, 90% vs. 13/21, 62%; p = 0.02), necrosis (81/111, 73% vs. 8/21, 38%; p = 0.02), lower values of tumor/cortex ratio at portal time (0.61 vs. 0.74, p = 0.01) and higher variation of tumor/cortex ratio between arterial and portal times (0.22 vs. 0.05, p = 0.008) were associated with malignancy. A total of 35 radiomics features were selected, and “intensity mean value” was associated with RCCs in multivariate analysis (OR = 0.99). After ten-fold cross-validation, a C5.0Tree model was retained for its predictive performances, yielding a sensitivity of 95%, specificity of 42%, accuracy of 87% and AUC of 0.74. Conclusion: Our machine learning-based model combining clinical, radiologic and radiomics features from multiphasic contrast-enhanced CT scans may help differentiate benign from malignant solid renal tumors.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3