High Sensitivity Singlet Oxygen Luminescence Sensor Using Computational Spectroscopy and Solid-State Detector

Author:

Yu Tiffany C.1,Davis Steve J.1,Scimone Mark T.1ORCID,Grimble John1,Maguluri Gopi1,Anand Sanjay2ORCID,Cheng Cheng-En2,Maytin Edward2,Cao Xu3,Pogue Brian W.3,Zhao Youbo1

Affiliation:

1. Physical Sciences Inc., Andover, MA 01810, USA

2. Cleveland Clinic, Cleveland, OH 44195, USA

3. Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA

Abstract

This paper presents a technique for high sensitivity measurement of singlet oxygen luminescence generated during photodynamic therapy (PDT) and ultraviolet (UV) irradiation on skin. The high measurement sensitivity is achieved by using a computational spectroscopy (CS) approach that provides improved photon detection efficiency compared to spectral filtering methodology. A solid-state InGaAs photodiode is used as the CS detector, which significantly reduces system cost and improves robustness compared to photomultiplier tubes. The spectral resolution enables high-accuracy determination and subtraction of photosensitizer fluorescence baseline without the need for time-gating. This allows for high sensitivity detection of singlet oxygen luminescence emission generated by continuous wave light sources, such as solar simulator sources and those commonly used in PDT clinics. The value of the technology is demonstrated during in vivo and ex vivo experiments that show the correlation of measured singlet oxygen with PDT treatment efficacy and the illumination intensity on the skin. These results demonstrate the potential use of the technology as a dosimeter to guide PDT treatment and as an analytical tool supporting the development of improved sunscreen products for skin cancer prevention.

Funder

US National Institute of Health

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3