A Deep Diagnostic Framework Using Explainable Artificial Intelligence and Clustering

Author:

Thunold Håvard Horgen1,Riegler Michael A.12ORCID,Yazidi Anis1ORCID,Hammer Hugo L.12ORCID

Affiliation:

1. Department of Compute Science, Faculty of Technology, Art and Design, Oslo Metropolitan University, 0176 Oslo, Norway

2. Department of Holistic Systems, SimulaMet, 0176 Oslo, Norway

Abstract

An important part of diagnostics is to gain insight into properties that characterize a disease. Machine learning has been used for this purpose, for instance, to identify biomarkers in genomics. However, when patient data are presented as images, identifying properties that characterize a disease becomes far more challenging. A common strategy involves extracting features from the images and analyzing their occurrence in healthy versus pathological images. A limitation of this approach is that the ability to gain new insights into the disease from the data is constrained by the information in the extracted features. Typically, these features are manually extracted by humans, which further limits the potential for new insights. To overcome these limitations, in this paper, we propose a novel framework that provides insights into diseases without relying on handcrafted features or human intervention. Our framework is based on deep learning (DL), explainable artificial intelligence (XAI), and clustering. DL is employed to learn deep patterns, enabling efficient differentiation between healthy and pathological images. Explainable artificial intelligence (XAI) visualizes these patterns, and a novel “explanation-weighted” clustering technique is introduced to gain an overview of these patterns across multiple patients. We applied the method to images from the gastrointestinal tract. In addition to real healthy images and real images of polyps, some of the images had synthetic shapes added to represent other types of pathologies than polyps. The results show that our proposed method was capable of organizing the images based on the reasons they were diagnosed as pathological, achieving high cluster quality and a rand index close to or equal to one.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3