The Contribution of Functional Near-Infrared Spectroscopy (fNIRS) to the Study of Neurodegenerative Disorders: A Narrative Review

Author:

Liampas Ioannis1ORCID,Danga Freideriki2,Kyriakoulopoulou Panagiota3,Siokas Vasileios1,Stamati Polyxeni1,Messinis Lambros4ORCID,Dardiotis Efthimios1ORCID,Nasios Grigorios2ORCID

Affiliation:

1. Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece

2. Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece

3. School of Medicine, University of Patras, 26504 Rio Patras, Greece

4. Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Functional near-infrared spectroscopy (fNIRS) is an innovative neuroimaging method that offers several advantages over other commonly used modalities. This narrative review investigated the potential contribution of this method to the study of neurodegenerative disorders. Thirty-four studies involving patients with Alzheimer’s disease (AD), mild cognitive impairment (MCI), frontotemporal dementia (FTD), Parkinson’s disease (PD), or amyotrophic lateral sclerosis (ALS) and healthy controls were reviewed. Overall, it was revealed that the prefrontal cortex of individuals with MCI may engage compensatory mechanisms to support declining brain functions. A rightward shift was suggested to compensate for the loss of the left prefrontal capacity in the course of cognitive decline. In parallel, some studies reported the failure of compensatory mechanisms in MCI and early AD; this lack of appropriate hemodynamic responses may serve as an early biomarker of neurodegeneration. One article assessing FTD demonstrated a heterogeneous cortical activation pattern compared to AD, indicating that fNIRS may contribute to the challenging distinction of these conditions. Regarding PD, there was evidence that cognitive resources (especially executive function) were recruited to compensate for locomotor impairments. As for ALS, fNIRS data support the involvement of extra-motor networks in ALS, even in the absence of measurable cognitive impairment.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3