Development and Validation of Two-Step Prediction Models for Postoperative Bedridden Status in Geriatric Intertrochanteric Hip Fractures

Author:

Dissaneewate Kantapon12ORCID,Dissaneewate Pornpanit1,Orapiriyakul Wich1,Kritsaneephaiboon Apipop1,Chewakidakarn Chulin1

Affiliation:

1. Department of Orthopedics, Faculty of Medicine, Prince of Songkhla University, Hat Yai 90110, Thailand

2. Department of Clinical Research and Medical Data Science, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand

Abstract

Patients with intertrochanteric hip fractures are at an elevated risk of becoming bedridden compared with those with intraarticular hip fractures. Accurate risk assessments can help clinicians select postoperative rehabilitation strategies to mitigate the risk of bedridden status. This study aimed to develop a two-step prediction model to predict bedridden status at 3 months postoperatively: one model (first step) for prediction at the time of admission to help dictate postoperative rehabilitation plans; and another (second step) for prediction at the time before discharge to determine appropriate discharge destinations and home rehabilitation programs. Three-hundred and eighty-four patients were retrospectively reviewed and divided into a development group (n = 291) and external validation group (n = 93). We developed a two-step prediction model to predict the three-month bedridden status of patients with intertrochanteric fractures from the development group. The first (preoperative) model incorporated four simple predictors: age, dementia, American Society of Anesthesiologists physical status classification (ASA), and pre-fracture ambulatory status. The second (predischarge) model used an additional predictor, ambulation status before discharge. Model performances were evaluated using the external validation group. The preoperative model performances were area under ROC curve (AUC) = 0.72 (95%CI 0.61–0.83) and calibration slope = 1.22 (0.40–2.23). The predischarge model performances were AUC = 0.83 (0.74–0.92) and calibration slope = 0.89 (0.51–1.35). A decision curve analysis (DCA) showed a positive net benefit across a threshold probability between 10% and 35%, with a higher positive net benefit for the predischarge model. Our prediction models demonstrated good discrimination, calibration, and net benefit gains. Using readily available predictors for prognostic prediction can assist clinicians in planning individualized postoperative rehabilitation programs, home-based rehabilitation programs, and determining appropriate discharge destinations, especially in environments with limited resources.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3