Contextual Features and Information Bottleneck-Based Multi-Input Network for Breast Cancer Classification from Contrast-Enhanced Spectral Mammography

Author:

Li XinmengORCID,Cui Jia,Song Jingqi,Jia Mingyu,Zou Zhenxing,Ding Guocheng,Zheng Yuanjie

Abstract

In computer-aided diagnosis methods for breast cancer, deep learning has been shown to be an effective method to distinguish whether lesions are present in tissues. However, traditional methods only classify masses as benign or malignant, according to their presence or absence, without considering the contextual features between them and their adjacent tissues. Furthermore, for contrast-enhanced spectral mammography, the existing studies have only performed feature extraction on a single image per breast. In this paper, we propose a multi-input deep learning network for automatic breast cancer classification. Specifically, we simultaneously input four images of each breast with different feature information into the network. Then, we processed the feature maps in both horizontal and vertical directions, preserving the pixel-level contextual information within the neighborhood of the tumor during the pooling operation. Furthermore, we designed a novel loss function according to the information bottleneck theory to optimize our multi-input network and ensure that the common information in the multiple input images could be fully utilized. Our experiments on 488 images (256 benign and 232 malignant images) from 122 patients show that the method’s accuracy, precision, sensitivity, specificity, and f1-score values are 0.8806, 0.8803, 0.8810, 0.8801, and 0.8806, respectively. The qualitative, quantitative, and ablation experiment results show that our method significantly improves the accuracy of breast cancer classification and reduces the false positive rate of diagnosis. It can reduce misdiagnosis rates and unnecessary biopsies, helping doctors determine accurate clinical diagnoses of breast cancer from multiple CESM images.

Funder

National Natural Science Foundation of China

the Taishan Scholar Project of Shandong Province

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference45 articles.

1. Cancer statistics, 2021;Siegel;CA Cancer J. Clin.,2021

2. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Sung;CA Cancer J. Clin.,2021

3. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme;Lobbes;Eur. Radiol.,2014

4. International evaluation of an ai system for breast cancer screening;McKinney;Nature,2020

5. A dedicated bi-rads training programme: Effect on the inter-observer variation among screening radiologists;Timmers;Eur. J. Radiol.,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3