Identification of an Individualized Prognostic Biomarker for Serous Ovarian Cancer: A Qualitative Model

Author:

Luo Fengyuan,Li Na,Zhang Qi,Ma Liyuan,Li Xinqiao,Hu Tao,Zhong Haijian,Li Hongdong,Hong Guini

Abstract

Serous ovarian cancer is the most common type of ovarian epithelial cancer and usually has a poor prognosis. The objective of this study was to construct an individualized prognostic model for predicting overall survival in serous ovarian cancer. Based on the relative expression orderings (Ea > Eb/Ea ≤ Eb) of gene pairs closely associated with serous ovarian prognosis, we tried constructing a potential individualized qualitative biomarker by the greedy algorithm and evaluated the performance in independent validation datasets. We constructed a prognostic biomarker consisting of 20 gene pairs (SOV-P20). The overall survival between high- and low-risk groups stratified by SOV-P20 was statistically significantly different in the training and independent validation datasets from other platforms (p < 0.05, Wilcoxon test). The average area under the curve (AUC) values of the training and three validation datasets were 0.756, 0.590, 0.630, and 0.680, respectively. The distribution of most immune cells between high- and low-risk groups was quite different (p < 0.001, Wilcoxon test). The low-risk patients tended to show significantly better tumor response to chemotherapy than the high-risk patients (p < 0.05, Fisher’s exact test). SOV-P20 achieved the highest mean index of concordance (C-index) (0.624) compared with the other seven existing prognostic signatures (ranging from 0.511 to 0.619). SOV-P20 is a promising prognostic biomarker for serous ovarian cancer, which will be applicable for clinical predictive risk assessment.

Funder

National Natural Science Foundation of China

Thousand Talents Program of Jiangxi for High-level talents in innovation and entrepreneurship

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference41 articles.

1. Research status of the prevalence and burden of disease of three malignant tumors in common gynecology Chin;Chen;J. Mod. Med.,2015

2. Analysis of ovarian cancer incidence and mortality in China in 2010;Zhang;China Oncol.,2016

3. ESMO–ESGO consensus conference recommendations on ovarian cancer: Pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease;Colombo;Ann. Oncol.,2019

4. Ovarian cancer statistics, 2018;Torre;CA Cancer J. Clin.,2018

5. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes;Wang;Nat. Genet.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimal Risk Prediction for Ovarian Cancer Patients Using Symptoms Based Canonical Correlation Analysis;2023 World Conference on Communication & Computing (WCONF);2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3