Computer-Aided Breast Surgery Framework Using a Markerless Augmented Reality Method

Author:

Khang SeungwooORCID,Park Taeyong,Lee Junwoo,Kim Kyung WonORCID,Song HyunjooORCID,Lee Jeongjin

Abstract

This study proposes a markerless Augmented Reality (AR) surgical framework for breast lesion removal using a depth sensor and 3D breast Computed Tomography (CT) images. A patient mesh in the real coordinate system is acquired through a patient 3D scan using a depth sensor for registration. The patient mesh on the virtual coordinate system is obtained by contrast-based skin segmentation in 3D mesh generated from breast CT scans. Then, the nipple area is detected based on the gradient in the segmented skin area. The region of interest (ROI) is set based on the detection result to select the vertices in the virtual coordinate system. The mesh on the real and virtual coordinate systems is first aligned by matching the center of mass, and the Iterative Closest Point (ICP) method is applied to perform more precise registration. Experimental results of 20 patients’ data showed 98.35 ± 0.71% skin segmentation accuracy in terms of Dice Similarity Coefficient (DSC) value, 2.79 ± 1.54 mm nipple detection error, and 4.69 ± 1.95 mm registration error. Experiments using phantom and patient data also confirmed high accuracy in AR visualization. The proposed method in this study showed that the 3D AR visualization of medical data on the patient’s body is possible by using a single depth sensor without having to use markers.

Funder

the National Research Foundation of Korea, a government

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference23 articles.

1. Cancer facts & figures 2020;Siegel;CA Cancer J. Clin.,2020

2. Trend of technological development in VR/AR/MR;Lee;Wkly. ICT Trend,2019

3. Miniature AR: Augmented reality based display system for experiencing next digilog-type contents;Kim;J. Korean Inst. Next Gener. Comput.,2009

4. Spine surgery using augmented reality;Park;J. Korean Soc. Spine Surg.,2019

5. Adagolodjo, Y., Golse, N., Vibert, E., De Mathelin, M., Cotin, S., and Courtecuisse, H. (2018, January 21–25). Marker-Based Registration for Large Deformations-Application to Open Liver Surgery. Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3