Abstract
Restoring information obstructed by hair is one of the main issues for the accurate analysis and segmentation of skin images. For retrieving pixels obstructed by hair, the proposed system converts dermoscopy images into the L*a*b* color space, then principal component analysis (PCA) is applied to produce grayscale images. Afterward, the contrast-limited adaptive histogram equalization (CLAHE) and the average filter are implemented to enhance the grayscale image. Subsequently, the binary image is generated using the iterative thresholding method. After that, the Hough transform (HT) is applied to each image block to generate the hair mask. Finally, the hair pixels are removed by harmonic inpainting. The performance of the proposed automated hair removal was evaluated by applying the proposed system to the International Skin Imaging Collaboration (ISIC) dermoscopy dataset as well as to clinical images. Six performance evaluation metrics were measured, namely the mean squared error (MSE), the peak signal-to-noise ratio (PSNR), the signal-to-noise ratio (SNR), the structural similarity index (SSIM), the universal quality image index (UQI), and the correlation (C). Using the clinical dataset, the system achieved MSE, PSNR, SNR, SSIM, UQI, and C values of 34.7957, 66.98, 42.39, 0.9813, 0.9801, and 0.9985, respectively. The results demonstrated that the proposed system could satisfy the medical diagnostic requirements and achieve the best performance compared to the state-of-art.
Funder
Research Funding Center, Postgraduate Studies and Scientific Research Sector, Tanta University, Egypt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Fetal Classification Accuracy through Computer-Aided Impainting Techniques;2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC);2024-05-21
2. Automated Brain Tumor Segmentation in MRI : An Enhanced Mask Generation Approach;2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC);2023-10-11