Electrochemical Polymerisation of Glutamic Acid on the Surface of Graphene Paste Electrode for the Detection and Quantification of Rutin in Food and Medicinal Samples

Author:

Amrutha Balliamada M.,Manjunatha Jamballi G.ORCID,Nagarajappa HareeshaORCID,Tighezza Ammar M.ORCID,Albaqami Munirah D.,Sillanpää MikaORCID

Abstract

Rutin (RU) is one of the best-known natural antioxidants with various physiological functions in the human body and other plant species. In this work, an efficient voltammetric sensor to detect RU in food samples was explicated using a poly (glutamic acid)-modified graphene paste electrode (PGAMGPE). In order to detect RU, the proposed sensor diminishes material resistance and overpotential while increasing kinetic rate, peak currents, and material conductance. Using differential pulse voltammetry (DPV) and cyclic voltammetry (CV), the analysing efficiency of a PGAMGPE and a Bare graphene paste electrode (BGPE) was evaluated in 0.2 M phosphate buffer (PB) at an ideal pH of 6.5. in a potential window of −0.25 V to 0.6 V. Electrochemical impedance spectroscopy (EIS) was used to analyse the prepared electrode materials’ conductivity, charge transfer resistance, and the kinetics of electron transport. Field emission scanning electron microscopy (FE-SEM) images were considered to compare the exterior morphology of the PGAMGPE and the BGPE. It was discovered that the PGAMGPE and the BGPE have electroactive surfaces of 0.062 cm2 and 0.04 cm2, respectively. It was determined that two protons and two electrons participated in the redox process. The resultant limit of detection (LOD) was found to be 0.04 µM and 0.06 µM, respectively, using DPV and CV methods. In spite of common interferents such as metal ions and chemical species, the developed sensor’s selectivity for RU detection was impressive. For the simultaneous analysis of RU in the presence of caffeine (CF), the PGAMGPE affords a good electrochemical nature for RU with good selectivity. Due to the good stability, repeatability, reproducibility, and ease of use of the present RU sensor, it is useful for real sample analysis such as food and medicinal samples with recovery ranging from 94 to 100%.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3