COVID-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer

Author:

Chattopadhyay SohamORCID,Dey ArijitORCID,Singh Pawan KumarORCID,Geem Zong WooORCID,Sarkar RamORCID

Abstract

The COVID-19 virus is spreading across the world very rapidly. The World Health Organization (WHO) declared it a global pandemic on 11 March 2020. Early detection of this virus is necessary because of the unavailability of any specific drug. The researchers have developed different techniques for COVID-19 detection, but only a few of them have achieved satisfactory results. There are three ways for COVID-19 detection to date, those are real-time reverse transcription-polymerize chain reaction (RT-PCR), Computed Tomography (CT), and X-ray plays. In this work, we have proposed a less expensive computational model for automatic COVID-19 detection from Chest X-ray and CT-scan images. Our paper has a two-fold contribution. Initially, we have extracted deep features from the image dataset and then introduced a completely novel meta-heuristic feature selection approach, named Clustering-based Golden Ratio Optimizer (CGRO). The model has been implemented on three publicly available datasets, namely the COVID CT-dataset, SARS-Cov-2 dataset, and Chest X-Ray dataset, and attained state-of-the-art accuracies of 99.31%, 98.65%, and 99.44%, respectively.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3