Accurate and Reliable Classification of Unstructured Reports on Their Diagnostic Goal Using BERT Models

Author:

Rietberg Max Tigo1ORCID,Nguyen Van Bach2ORCID,Geerdink Jeroen3ORCID,Vijlbrief Onno3ORCID,Seifert Christin2ORCID

Affiliation:

1. Faculty of EEMCS, University of Twente, 7500 AE Enschede, The Netherlands

2. Institute for Artificial Intelligence in Medicine, University of Duisburg-Essen, 45131 Essen, Germany

3. Hospital Group Twente (ZGT), 7555 DL Hengelo, The Netherlands

Abstract

Understanding the diagnostic goal of medical reports is valuable information for understanding patient flows. This work focuses on extracting the reason for taking an MRI scan of Multiple Sclerosis (MS) patients using the attached free-form reports: Diagnosis, Progression or Monitoring. We investigate the performance of domain-dependent and general state-of-the-art language models and their alignment with domain expertise. To this end, eXplainable Artificial Intelligence (XAI) techniques are used to acquire insight into the inner workings of the model, which are verified on their trustworthiness. The verified XAI explanations are then compared with explanations from a domain expert, to indirectly determine the reliability of the model. BERTje, a Dutch Bidirectional Encoder Representations from Transformers (BERT) model, outperforms RobBERT and MedRoBERTa.nl in both accuracy and reliability. The latter model (MedRoBERTa.nl) is a domain-specific model, while BERTje is a generic model, showing that domain-specific models are not always superior. Our validation of BERTje in a small prospective study shows promising results for the potential uptake of the model in a practical setting.

Funder

Open Access Publication Fund of the University of Duisburg-Essen

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference48 articles.

1. Centraal Bureau voor de Statistiek (2022). Zorguitgaven; Kerncijfers, Centraal Bureau voor de Statistiek.

2. Structured Radiology Reporting: Are We There Yet?;Langlotz;Radiology,2009

3. Medication Accuracy in Electronic Health Records for Microbial Keratitis;Ashfaq;JAMA Ophthalmol.,2019

4. New Paradigms for Patient-Centered Outcomes Research in Electronic Medical Records;Tamang;eGEMs,2016

5. Electronic health records contain dispersed risk factor information that could be used to prevent breast and ovarian cancer;Payne;J. Am. Med Inform. Assoc. JAMIA,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3