Automatic Classification of Particles in the Urine Sediment Test with the Developed Artificial Intelligence-Based Hybrid Model

Author:

Yildirim Muhammed1ORCID,Bingol Harun2,Cengil Emine3,Aslan Serpil2ORCID,Baykara Muhammet4ORCID

Affiliation:

1. Department of Computer Engineering, Malatya Turgut Ozal University, Malatya 44200, Turkey

2. Department of Software Engineering, Malatya Turgut Ozal University, Malatya 44200, Turkey

3. Department of Computer Engineering, Bitlis Eren University, Bitlis 13100, Turkey

4. Department of Software Engineering, Firat University, Elazig 23100, Turkey

Abstract

Urine sediment examination is one of the main tests used in the diagnosis of many diseases. Thanks to this test, many diseases can be detected in advance. Examining the results of this test is an intensive and time-consuming process. Therefore, it is very important to automatically interpret the urine sediment test results using computer-aided systems. In this study, a data set consisting of eight classes was used. The data set used in the study consists of 8509 particle images obtained by examining the particles in the urine sediment. A hybrid model based on textural and Convolutional Neural Networks (CNN) was developed to classify the images in the related data set. The features obtained using textural-based methods and the features obtained from CNN-based architectures were combined after optimizing using the Minimum Redundancy Maximum Relevance (mRMR) method. In this way, we aimed to extract different features of the same image. This increased the performance of the proposed model. The CNN-based ResNet50 architecture and textural-based Local Binary Pattern (LBP) method were used for feature extraction. Finally, the optimized and combined feature map was classified at different machine learning classifiers. In order to compare the performance of the model proposed in the study, results were also obtained from different CNN architectures. A high accuracy value of 96.0% was obtained in the proposed model.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3