Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data

Author:

El-Latif Ahmed A. Abd12ORCID,Chelloug Samia Allaoua3ORCID,Alabdulhafith Maali3,Hammad Mohamed14ORCID

Affiliation:

1. EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

2. Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt

3. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Department of Information Technology, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and aberrant protein deposition in the brain. Therefore, the early detection of AD is crucial for the development of effective treatments and interventions, as the disease is more responsive to treatment in its early stages. It is worth mentioning that deep learning techniques have been successfully applied in recent years to a wide range of medical imaging tasks, including the detection of AD. These techniques have the ability to automatically learn and extract features from large datasets, making them well suited for the analysis of complex medical images. In this paper, we propose an improved lightweight deep learning model for the accurate detection of AD from magnetic resonance imaging (MRI) images. Our proposed model achieves high detection performance without the need for deeper layers and eliminates the use of traditional methods such as feature extraction and classification by combining them all into one stage. Furthermore, our proposed method consists of only seven layers, making the system less complex than other previous deep models and less time-consuming to process. We evaluate our proposed model using a publicly available Kaggle dataset, which contains a large number of records in a small dataset size of only 36 Megabytes. Our model achieved an overall accuracy of 99.22% for binary classification and 95.93% for multi-classification tasks, which outperformed other previous models. Our study is the first to combine all methods used in the publicly available Kaggle dataset for AD detection, enabling researchers to work on a dataset with new challenges. Our findings show the effectiveness of our lightweight deep learning framework to achieve high accuracy in the classification of AD.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3