Cervical Cell/Clumps Detection in Cytology Images Using Transfer Learning

Author:

Xu Chuanyun,Li Mengwei,Li Gang,Zhang Yang,Sun Chengjie,Bai Nanlan

Abstract

Cervical cancer is one of the most common and deadliest cancers among women and poses a serious health risk. Automated screening and diagnosis of cervical cancer will help improve the accuracy of cervical cell screening. In recent years, there have been many studies conducted using deep learning methods for automatic cervical cancer screening and diagnosis. Deep-learning-based Convolutional Neural Network (CNN) models require large amounts of data for training, but large cervical cell datasets with annotations are difficult to obtain. Some studies have used transfer learning approaches to handle this problem. However, such studies used the same transfer learning method that is the backbone network initialization by the ImageNet pre-trained model in two different types of tasks, the detection and classification of cervical cell/clumps. Considering the differences between detection and classification tasks, this study proposes the use of COCO pre-trained models when using deep learning methods for cervical cell/clumps detection tasks to better handle limited data set problem at training time. To further improve the model detection performance, based on transfer learning, we conducted multi-scale training according to the actual situation of the dataset. Considering the effect of bounding box loss on the precision of cervical cell/clumps detection, we analyzed the effects of different bounding box losses on the detection performance of the model and demonstrated that using a loss function consistent with the type of pre-trained model can help improve the model performance. We analyzed the effect of mean and std of different datasets on the performance of the model. It was demonstrated that the detection performance was optimal when using the mean and std of the cervical cell dataset used in the current study. Ultimately, based on backbone Resnet50, the mean Average Precision (mAP) of the network model is 61.6% and Average Recall (AR) is 87.7%. Compared to the current values of 48.8% and 64.0% in the used dataset, the model detection performance is significantly improved by 12.8% and 23.7%, respectively.

Funder

Chongqing Science and Technology Commission

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference64 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3