Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review

Author:

Subudhi Asit,Dash PratyusaORCID,Mohapatra Manoranjan,Tan Ru-San,Acharya U. RajendraORCID,Sabut Sukanta

Abstract

Magnetic resonance imaging (MRI) is a standard tool for the diagnosis of stroke, but its manual interpretation by experts is arduous and time-consuming. Thus, there is a need for computer-aided-diagnosis (CAD) models for the automatic segmentation and classification of stroke on brain MRI. The heterogeneity of stroke pathogenesis, morphology, image acquisition modalities, sequences, and intralesional tissue signal intensity, as well as lesion-to-normal tissue contrast, pose significant challenges to the development of such systems. Machine learning (ML) is increasingly being used in predictive neuroimaging diagnosis and prognostication. This paper reviews image processing and machine learning techniques that have been applied to detect ischemic stroke on brain MRI, including details on image acquisition, pre-processing, techniques to segment, extraction of features, and classification into stroke types. The main objective of this work is to find the state-of-art machine learning techniques used to predict the ischemic stroke and their application in clinical set-up. The article selection is performed according to PRISMA guideline. The state-of-the-art on automated MRI stroke diagnosis, with a focus on machine learning, is discussed, along with its advantages and limitations. We found that the various machine learning models discussed in this article are able to detect the infarcts with an acceptable accuracy of 70–90%. However, no one has highlighted the time complexity to predict the stroke in the model developed, which is an important factor. The work concludes with proposals for future recommendations for building efficient and robust deep learning (DL) models for quantitative brain MRI analysis. In recent work, with the application of DL approaches, using large datasets to train the models has improved the detection accuracy and reduced computational complexity. We suggest that the design of a decision support system based on artificial intelligence (AI) and clinical data presenting symptoms is essential to support clinicians to accelerate diagnosis and timeous therapy in the emergency management of stroke.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3