Key Members of the CmPn as Biomarkers Distinguish Histological and Immune Subtypes of Hepatic Cancers

Author:

Abou-Fadel Johnathan1,Reid Victoria1ORCID,Le Alexander1,Croft Jacob1,Zhang Jun1ORCID

Affiliation:

1. Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA

Abstract

Liver cancer, comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a leading cause of cancer-related deaths worldwide. The liver is a primary metabolic organ for progesterone (PRG) and PRG exerts its effects through classic nuclear PRG receptors (nPRs) and non-classic membrane PRG receptors (mPRs) or a combination of both. Previous studies have shown that the CCM signaling complex (CSC) couples both nPRs and mPRs to form the CmPn (CSC-mPR-PRG-nPR) signaling network, which is involved in multiple cellular signaling pathways, including tumorigenesis of various cancers. Despite advances in treatment, 5-year survival rates for liver cancer patients remain low, largely due to the chemoresistant nature of HCCs. The lack of sensitive and specific biomarkers for liver cancer diagnosis and prognosis emphasizes the need for identifying new potential biomarkers. We propose the potential use of CmPn members’ expression data as prognostic biomarkers or biomarker signatures for the major types of hepatic cancer, including HCCs and CCAs, as well as rare subtypes such as undifferentiated pleomorphic sarcoma (UPS) and hepatic angiosarcoma (HAS). In this study, we investigated the CmPn network through RNAseq data and immunofluorescence techniques to measure alterations to key cancer pathways during liver tumorigenesis. Our findings reveal significant differential expression of multiple CmPn members, including CCM1, PAQR7, PGRMC1, and nPRs, in both HCCs and CCAs, highlighting the crucial roles of mPRs, nPRs, and CSC signaling during liver tumorigenesis. These key members of the CmPn network may serve as potential biomarkers for the diagnosis and prognosis of liver cancer subtypes, including rare subtypes.

Funder

NIH

Coldwell foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3