Characterization of Muscle Weakness Due to Myasthenia Gravis Using Shear Wave Elastography

Author:

Zimmer Manuela1ORCID,Kleiser Benedict2ORCID,Marquetand Justus234ORCID,Ates Filiz1ORCID

Affiliation:

1. Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

2. Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany

3. Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany

4. MEG-Center, University of Tübingen, Otfried-Müller-Str. 47, 72076 Tübingen, Germany

Abstract

Myasthenia gravis (MG) is often accompanied with muscle weakness; however, little is known about mechanical adaptions of the affected muscles. As the latter can be assessed using ultrasound shear wave elastography (SWE), this study characterizes the biceps brachii muscle of 11 patients with MG and compares them with that of 14 healthy volunteers. Simultaneous SWE, elbow torque and surface electromyography measurements were performed during rest, maximal voluntary contraction (MVC) and submaximal isometric contractions (up to 25%, 50% and 75% MVC) at different elbow angles from flexion to extension. We found that, with increasing elbow angle, maximum elbow torque decreased (p < 0.001), whereas muscle stiffness increased during rest (p = 0.001), MVC (p = 0.004) and submaximal contractions (p < 0.001). Muscle stiffness increased with increasing contraction intensities during submaximal contractions (p < 0.001). In comparison to the healthy cohort, muscle stiffness of MG patients was 2.1 times higher at rest (p < 0.001) but 8.93% lower in active state (75% MVC, p = 0.044). We conclude that (i) increased muscle stiffness shown by SWE during rest might be an indicator of MG, (ii) SWE reflects muscle weakness and (iii) SWE can be used to characterize MG muscle.

Funder

Deutsche Forschungsgemeinschaft (DFG)—German Research Foundation

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3