Human Papillomavirus E7 and p16INK4a mRNA Multiplexed Quantification by a QuantiGeneTM Proof-of-Concept Assay Sensitively Detects Infection and Cervical Dysplasia Severity

Author:

Skof Anna Sophie1ORCID,Rotenberg Lina1,Hannemann Paul Viktor Felix1,Thies Sarah1,Boschetti-Grützmacher Eleonora1,Kaufmann Andreas M.1ORCID

Affiliation:

1. Department of Gynecology, CVK, HPV Research Laboratory, Charité–Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany

Abstract

Background: Persistent infection with human papillomavirus (HPV) can lead to cervical cancer (CxCa). During the progression to CxCa, the expression of HPV oncogenes E6 and E7 is upregulated. In turn, cellular proteins such as p16INK4a are also modulated. The combined detection of HPV oncogenes and cellular biomarkers indicative for dysplasia could be informative and convey better specificity than the current HPV tests that cannot discriminate transient infection from dysplastic changes. Methods: The QuantiGeneTM 2.0 Plex Assay platform was chosen for the effective multiplexing and quantitative detection of seven HPV-E7 mRNA targets (HPV6, 16, 18, 31, 45, 59, and 68) and the cellular mRNA of p16INK4a as a biomarker for HPV-induced transformation. Actin-beta (ACTB) and hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) were included as reference markers. Sequences for the specific capture and detector probes were customized and developed by ThermoFisher and formulated as a QuantiGene proof-of-concept (QG-POC) plex-set. The crude lysates of the HPV-positive cervical cancer cell lines CaSki (HPV16), HeLa (HPV18), MRHI-215 (HPV45), Erin59 (HPV59), ME180 (HPV68), and the HPV-negative cell line C33A, as well as liquid-based cytology smear samples (n = 441) were analyzed. The study was a proof-of-concept evaluating the feasibility of the platform. Logistic regression and receiver operating characteristic (ROC) analyses were performed to test for the sensitivity and specificity of HPV detection and dysplastic stage discrimination. Results: A QG-POC assay specifically and sensitively detects the HPV-E7 mRNA of seven different genotypes with an assay linearity between 20 and 13,000 cells. Cellular mRNA was detected from the crude lysates of cell lines and of cellular material from clinical liquid-based cytology smear samples. By combining HPV-E7 and p16INK4a expression normalized to ACTB, high-grade dysplasia (HCIN) and invasive cervical cancer (CxCa) were detectable, discriminable, and correlated to the biomarker expression strength. The ROC analysis from the multivariate logistic regression model including HPV-E7 and p16 INK4a resulted in an AUC of 0.74, at the optimal cut-off (sensitivity: 70.4%; specificity: 66.0%) for HCIN detection. CxCa was detected with an AUC of 0.77 (sensitivity: 81.8%, specificity: 77.4%). Conclusions: The QG-POC assay is sufficiently sensitive to detect and quantify HPV-E7 and cellular mRNA species. Multiplexing allows the specific detection of at least 10 analytes in a single reaction. Determining the abundance of E7 and p16INK4a transcripts when normalized to ACTB is informative about the presence of cervical dysplasia and potentially discriminates between low-grade and high-grade dysplasia and invasive cervical cancer. Further studies including more HPV genotypes and biomarkers are warranted.

Funder

EU 7th framework program, FP7-HEALTH

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference48 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;Sung;CA Cancer. J. Clin.,2021

2. The epidemiology of human papillomavirusinfection and its association with cervical cancer;Bosch;Int. J. Gynecol. Obs.,2006

3. Classification of papillomaviruses;Fauquet;Virology,2004

4. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012). A Review of Human Carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum., 100, 1–441.

5. Reduced cervical cancer incidence and mortality in Canada: National data from 1932 to 2006;Dickinson;BMC Public Health,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3