Study of Laser Light Scattering Methods in Rapid Viability Assessment of Microorganisms under Antibiotics Exposure for Adaptation in Lab-on-A-Chip Format

Author:

Zimina Tatiana M.1ORCID,Pinchuk Olga A.2,Kaplun Dmitry I.3ORCID,Kraeva Lyudmila A.4ORCID,Sitkov Nikita O.1ORCID

Affiliation:

1. Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia

2. The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), 190005 Saint Petersburg, Russia

3. Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia

4. Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia

Abstract

The antibiotic resistance (ABR) problem is becoming increasingly disturbing and it is important to implement express methods of ABR testing to allow operative antibiotic therapy decisions. The application of laser light scattering (LLS) in microbiological analysis for express ABR testing of microorganisms has been considered. The ways of miniaturization of laser light scattering for creating the bases of their integration into microbiological laboratory-on-a-chip (MLOC) for clinical express diagnostics have been analysed. The advantage of miniaturization in the context of clinical express analysis realization problems are investigated. A system of parallel measuring cells and illumination, enabling simultaneous testing of a group of antibiotics, was tested by splitting a laser beam with a two-dimensional collimator prepared of nanoporous anodic aluminum oxide. It has been demonstrated that the application of LLS methods, providing high concentration and mass sensitivity as well as a miniaturization potential, is an effective approach in the development of new generation diagnostic instruments. The studies have demonstrated the ability of methods to register effects of antibiotics on microbiological samples within 10 min. The following microorganisms were used in the study: Escherichia coli M-17, Lactobacillus plantarum, Bifidobacterium bifidum, Stenotrophomonas maltophilia.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3