Newborn Cry-Based Diagnostic System to Distinguish between Sepsis and Respiratory Distress Syndrome Using Combined Acoustic Features

Author:

Khalilzad ZahraORCID,Hasasneh Ahmad,Tadj ChakibORCID

Abstract

Crying is the only means of communication for a newborn baby with its surrounding environment, but it also provides significant information about the newborn’s health, emotions, and needs. The cries of newborn babies have long been known as a biomarker for the diagnosis of pathologies. However, to the best of our knowledge, exploring the discrimination of two pathology groups by means of cry signals is unprecedented. Therefore, this study aimed to identify septic newborns with Neonatal Respiratory Distress Syndrome (RDS) by employing the Machine Learning (ML) methods of Multilayer Perceptron (MLP) and Support Vector Machine (SVM). Furthermore, the cry signal was analyzed from the following two different perspectives: 1) the musical perspective by studying the spectral feature set of Harmonic Ratio (HR), and 2) the speech processing perspective using the short-term feature set of Gammatone Frequency Cepstral Coefficients (GFCCs). In order to assess the role of employing features from both short-term and spectral modalities in distinguishing the two pathology groups, they were fused in one feature set named the combined features. The hyperparameters (HPs) of the implemented ML approaches were fine-tuned to fit each experiment. Finally, by normalizing and fusing the features originating from the two modalities, the overall performance of the proposed design was improved across all evaluation measures, achieving accuracies of 92.49% and 95.3% by the MLP and SVM classifiers, respectively. The MLP classifier was outperformed in terms of all evaluation measures presented in this study, except for the Area Under Curve of Receiver Operator Characteristics (AUC-ROC), which signifies the ability of the proposed design in class separation. The achieved results highlighted the role of combining features from different levels and modalities for a more powerful analysis of the cry signals, as well as including a neural network (NN)-based classifier. Consequently, attaining a 95.3% accuracy for the separation of two entangled pathology groups of RDS and sepsis elucidated the promising potential for further studies with larger datasets and more pathology groups.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference74 articles.

1. World Health Organization (2021). Newborn Mortality.

2. Respiratory distress of the term newborn infant;Paediatr. Respir. Rev.,2013

3. Statistics Canada (2022). Leading Causes of Death, Infants.

4. Respiratory distress syndrome of the newborn—Principles in treatment;Arch. Dis. Child.,1962

5. Pathophysiology and treatment of septic shock in neonates;Clin. Perinatol.,2010

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3