Abstract
Efficient and scalable early diagnostic methods for knee osteoarthritis are desired due to the disease’s prevalence. The current automatic methods for detecting osteoarthritis using plain radiographs struggle to identify the subjects with early-stage disease. Tibial spiking has been hypothesized as a feature of early knee osteoarthritis. Previous research has demonstrated an association between knee osteoarthritis and tibial spiking, but the connection to the early-stage disease has not been investigated. We study tibial spiking as a feature of early knee osteoarthritis. Additionally, we develop a deep learning based model for detecting tibial spiking from plain radiographs. We collected and graded 913 knee radiographs for tibial spiking. We conducted two experiments: experiments A and B. In experiment A, we compared the subjects with and without tibial spiking using Mann-Whitney U-test. Experiment B consisted of developing and validating an interpretative deep learning based method for predicting tibial spiking. The subjects with tibial spiking had more severe Kellgren-Lawrence grade, medial joint space narrowing, and osteophyte score in the lateral tibial compartment. The developed method achieved an accuracy of 0.869. We find tibial spiking a promising feature in knee osteoarthritis diagnosis. Furthermore, the detection can be automatized.
Funder
Council of Tampere Region and European Regional Development Fund and Leverage
European Commission
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献