Metabolomic Selection in the Progression of Type 2 Diabetes Mellitus: A Genetic Algorithm Approach

Author:

Morgan-Benita JorgeORCID,Sánchez-Reyna Ana G.ORCID,Espino-Salinas Carlos H.ORCID,Oropeza-Valdez Juan JoséORCID,Luna-García HuizilopoztliORCID,Galván-Tejada Carlos E.ORCID,Galván-Tejada Jorge I.,Gamboa-Rosales HamurabiORCID,Enciso-Moreno Jose Antonio,Celaya-Padilla JoséORCID

Abstract

According to the World Health Organization (WHO), type 2 diabetes mellitus (T2DM) is a result of the inefficient use of insulin by the body. More than 95% of people with diabetes have T2DM, which is largely due to excess weight and physical inactivity. This study proposes an intelligent feature selection of metabolites related to different stages of diabetes, with the use of genetic algorithms (GA) and the implementation of support vector machines (SVMs), K-Nearest Neighbors (KNNs) and Nearest Centroid (NEARCENT) and with a dataset obtained from the Instituto Mexicano del Seguro Social with the protocol name of the following: “Análisis metabolómico y transcriptómico diferencial en orina y suero de pacientes pre diabéticos, diabéticos y con nefropatía diabética para identificar potenciales biomarcadores pronósticos de daño renal” (differential metabolomic and transcriptomic analyses in the urine and serum of pre-diabetic, diabetic and diabetic nephropathy patients to identify potential prognostic biomarkers of kidney damage). In order to analyze which machine learning (ML) model is the most optimal for classifying patients with some stage of T2DM, the novelty of this work is to provide a genetic algorithm approach that detects significant metabolites in each stage of progression. More than 100 metabolites were identified as significant between all stages; with the data analyzed, the average accuracies obtained in each of the five most-accurate implementations of genetic algorithms were in the range of 0.8214–0.9893 with respect to average accuracy, providing a precise tool to use in detections and backing up a diagnosis constructed entirely with metabolomics. By providing five potential biomarkers for progression, these extremely significant metabolites are as follows: “Cer(d18:1/24:1) i2”, “PC(20:3-OH/P-18:1)”, “Ganoderic acid C2”, “TG(16:0/17:1/18:1)” and “GPEtn(18:0/20:4)”.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference43 articles.

1. (2022, October 02). What Is Diabetes. Available online: https://www.idf.org/aboutdiabetes/what-is-diabetes.html.

2. (2022, October 02). IDF Diabetes Atlas. Tenth Edition. Available online: https://diabetesatlas.org/#:%7E:text=Diabetes%20around%20the%20world%20in%202021%3A&text=Over%203%20in%204%20adults,over%20the%20last%2015%20years.

3. Type 2 diabetes;Lancet,2017

4. International Diabetes Federation (2022, October 01). Diabetes Facts & Figures. Available online: https://idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.

5. Pathogenetic Mechanisms of Diabetic Nephropathy;J. Am. Soc. Nephrol.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3