Visualization of Ray Propagation through Extended Depth-of-Focus Intraocular Lenses

Author:

Baur Isabella D.ORCID,Auffarth Gerd U.ORCID,Yan WeijiaORCID,Łabuz Grzegorz,Khoramnia RaminORCID

Abstract

Extended depth-of-focus (EDoF) presbyopia-correcting intraocular lens (IOL) models differ in their optical design and performance. In the laboratory, we compared the ray propagation and light intensity profiles of four IOLs: the non-diffractive AcrySof IQ Vivity (Alcon Inc., Fort Worth, TX, USA) and two diffractive models, Symfony ZXR00 (Johnson & Johnson Vision, Jacksonville, FL, USA) and AT Lara 829 MP (Carl Zeiss Meditec, Berlin, Germany). A fourth lens, the monofocal AcrySof IQ SN60WF (Alcon Inc.) acted as the control. We projected a 520 nm laser light through each submerged lens in a bath of fluorescein solution. A camera mounted on a microscope captured the light that emerged from the IOL. We recorded the IOLs’ point spread function (PSF) to determine the presence of unwanted visual effects. The ray propagation visualization and light intensity profile of the monofocal control showed one distinct focus, while the AcrySof IQ Vivity demonstrated an extended focus area. We observed two distinct foci with each diffractive IOL. We found a lower level of light spread beyond the PSF center for the AcrySof IQ Vivity compared to the diffractive IOLs. In conclusion, we could confirm the extended range of focus for all the EDoF IOL models. However, the non-diffractive AcrySof IQ Vivity appears to have a smoother transition from a far to an intermediate range. We discuss whether, in clinical use, the higher level of spurious light we found in the diffractive designs may translate into increased dysphotopsia.

Funder

Klaus Tschira Foundation

Rahel Goitein-Straus Programme of the Faculty of Medicine of Heidelberg University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference41 articles.

1. Extended depth-of-focus technology in intraocular lenses;J. Cataract. Refract. Surg.,2020

2. Clinical Outcomes of a New Hybrid Monofocal IOL with Extended Depth of Focus;J. Refract. Surg.,2021

3. Non-diffractive wavefront shaping extended depth of focus (EDoF) intraocular lens: Visual performance and patient-reported outcome;J. Cataract. Refract. Surg.,2021

4. Multicountry clinical outcomes of a new nondiffractive presbyopia-correcting IOL;J. Cataract Refract. Surg.,2021

5. Assessment of the image quality of extended depth-of-focus intraocular lens models in polychromatic light;J. Cataract Refract. Surg.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3