A 3-D Full Convolution Electromagnetic Reconstruction Neural Network (3-D FCERNN) for Fast Super-Resolution Electromagnetic Inversion of Human Brain

Author:

Cheng Yu,Xiao Li-YeORCID,Zhao Le-Yi,Hong Ronghan,Liu Qing Huo

Abstract

Three-dimensional (3-D) super-resolution microwave imaging of human brain is a typical electromagnetic (EM) inverse scattering problem with high contrast. It is a challenge for the traditional schemes based on deterministic or stochastic inversion methods to obtain high contrast and high resolution, and they require huge computational time. In this work, a dual-module 3-D EM inversion scheme based on deep neural network is proposed. The proposed scheme can solve the inverse scattering problems with high contrast and super-resolution in real time and reduce a huge computational cost. In the EM inversion module, a 3-D full convolution EM reconstruction neural network (3-D FCERNN) is proposed to nonlinearly map the measured scattered field to a preliminary image of 3-D electrical parameter distribution of the human brain. The proposed 3-D FCERNN is completely composed of convolution layers, which can greatly save training cost and improve model generalization compared with fully connected networks. Then, the image enhancement module employs a U-Net to further improve the imaging quality from the results of 3-D FCERNN. In addition, a dataset generation strategy based on the human brain features is proposed, which can solve the difficulty of human brain dataset collection and high training cost. The proposed scheme has been confirmed to be effective and accurate in reconstructing the distribution of 3-D super-resolution electrical parameters distribution of human brain through noise-free and noisy examples, while the traditional EM inversion method is difficult to converge in the case of high contrast and strong scatterers. Compared with our previous work, the training of FCERNN is faster and can significantly decrease computational resources.

Funder

Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of En-ergy Materials of Fujian Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3