BUViTNet: Breast Ultrasound Detection via Vision Transformers

Author:

Ayana GelanORCID,Choe Se-woonORCID

Abstract

Convolutional neural networks (CNNs) have enhanced ultrasound image-based early breast cancer detection. Vision transformers (ViTs) have recently surpassed CNNs as the most effective method for natural image analysis. ViTs have proven their capability of incorporating more global information than CNNs at lower layers, and their skip connections are more powerful than those of CNNs, which endows ViTs with superior performance. However, the effectiveness of ViTs in breast ultrasound imaging has not yet been investigated. Here, we present BUViTNet breast ultrasound detection via ViTs, where ViT-based multistage transfer learning is performed using ImageNet and cancer cell image datasets prior to transfer learning for classifying breast ultrasound images. We utilized two publicly available ultrasound breast image datasets, Mendeley and breast ultrasound images (BUSI), to train and evaluate our algorithm. The proposed method achieved the highest area under the receiver operating characteristics curve (AUC) of 1 ± 0, Matthew’s correlation coefficient (MCC) of 1 ± 0, and kappa score of 1 ± 0 on the Mendeley dataset. Furthermore, BUViTNet achieved the highest AUC of 0.968 ± 0.02, MCC of 0.961 ± 0.01, and kappa score of 0.959 ± 0.02 on the BUSI dataset. BUViTNet outperformed ViT trained from scratch, ViT-based conventional transfer learning, and CNN-based transfer learning in classifying breast ultrasound images (p < 0.01 in all cases). Our findings indicate that improved transformers are effective in analyzing breast images and can provide an improved diagnosis if used in clinical settings. Future work will consider the use of a wide range of datasets and parameters for optimized performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3