Role of an Automated Deep Learning Algorithm for Reliable Screening of Abnormality in Chest Radiographs: A Prospective Multicenter Quality Improvement Study

Author:

Govindarajan Arunkumar,Govindarajan Aarthi,Tanamala Swetha,Chattoraj SubhankarORCID,Reddy BhargavaORCID,Agrawal Rohitashva,Iyer Divya,Srivastava Anumeha,Kumar Pradeep,Putha Preetham

Abstract

In medical practice, chest X-rays are the most ubiquitous diagnostic imaging tests. However, the current workload in extensive health care facilities and lack of well-trained radiologists is a significant challenge in the patient care pathway. Therefore, an accurate, reliable, and fast computer-aided diagnosis (CAD) system capable of detecting abnormalities in chest X-rays is crucial in improving the radiological workflow. In this prospective multicenter quality-improvement study, we have evaluated whether artificial intelligence (AI) can be used as a chest X-ray screening tool in real clinical settings. Methods: A team of radiologists used the AI-based chest X-ray screening tool (qXR) as a part of their daily reporting routine to report consecutive chest X-rays for this prospective multicentre study. This study took place in a large radiology network in India between June 2021 and March 2022. Results: A total of 65,604 chest X-rays were processed during the study period. The overall performance of AI achieved in detecting normal and abnormal chest X-rays was good. The high negatively predicted value (NPV) of 98.9% was achieved. The AI performance in terms of area under the curve (AUC), NPV for the corresponding subabnormalities obtained were blunted CP angle (0.97, 99.5%), hilar dysmorphism (0.86, 99.9%), cardiomegaly (0.96, 99.7%), reticulonodular pattern (0.91, 99.9%), rib fracture (0.98, 99.9%), scoliosis (0.98, 99.9%), atelectasis (0.96, 99.9%), calcification (0.96, 99.7%), consolidation (0.95, 99.6%), emphysema (0.96, 99.9%), fibrosis (0.95, 99.7%), nodule (0.91, 99.8%), opacity (0.92, 99.2%), pleural effusion (0.97, 99.7%), and pneumothorax (0.99, 99.9%). Additionally, the turnaround time (TAT) decreased by about 40.63% from pre-qXR period to post-qXR period. Conclusions: The AI-based chest X-ray solution (qXR) screened chest X-rays and assisted in ruling out normal patients with high confidence, thus allowing the radiologists to focus more on assessing pathology on abnormal chest X-rays and treatment pathways.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3