Imaging and Clinical Parameters for Distinction between Infected and Non-Infected Fluid Collections in CT: Prospective Study Using Extended Microbiological Approach

Author:

Skusa Christopher,Skusa Romy,Wohlfarth MoritzORCID,Warnke Philipp,Podbielski AndreasORCID,Bath Kristina,Groß JustusORCID,Schafmayer Clemens,Frickmann HagenORCID,Weber Marc-AndréORCID,Hahn AndreasORCID,Meinel Felix G.ORCID

Abstract

The aim of this investigation was to evaluate predictive CT imaging features and clinical parameters to distinguish infected from sterile fluid collections. Detection of infectious agents by advanced microbiological analysis was used as the reference standard. From April 2018 to October 2019, all patients undergoing CT-guided drainages were prospectively enrolled, if drainage material volume was at least 5 mL. Univariate analysis revealed attenuation (p = 0.001), entrapped gas (p < 0.001), fat stranding (p < 0.001), wall thickness (p < 0.001) and enhancement (p < 0.001) as imaging biomarkers and procalcitonin (p = 0.003) as clinical predictive parameters for infected fluid collections. On multivariate analysis, attenuation > 10 HU (p = 0.038), presence of entrapped gas (p = 0.027) and wall enhancement (p = 0.028) were independent parameters for distinguishing between infected and non-infected fluids. Gas entrapment had high specificity (93%) but low sensitivity (48%), while wall enhancement had high sensitivity (91%) but low specificity (50%). CT attenuation > 10 HU showed intermediate sensitivity (74%) and specificity (70%). Evaluation of the published proposed scoring systems did not improve diagnostic accuracy over independent predictors in our study. In conclusion, this prospective study confirmed that CT attenuation > 10 HU, entrapped gas and wall enhancement are the key imaging features to distinguish infected from sterile fluid collections on CT.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3