Abstract
(1) Background: Fetal growth restriction is a relatively common disorder in pregnant patients with thrombophilia. New artificial intelligence algorithms are a promising option for the prediction of adverse obstetrical outcomes. The aim of this study was to evaluate the predictive performance of a Feed-Forward Back Propagation Network (FFBPN) for the prediction of small for gestational age (SGA) newborns in a cohort of pregnant patients with thrombophilia. (2) Methods: This observational retrospective study included all pregnancies in women with thrombophilia who attended two tertiary maternity hospitals in Romania between January 2013 and December 2020. Bivariate associations of SGA and each predictor variable were evaluated. Clinical and paraclinical predictors were further included in a FFBPN, and its predictive performance was assessed. (3) Results: The model had an area under the curve (AUC) of 0.95, with a true positive rate of 86.7%, and a false discovery rate of 10.5%. The overall accuracy of our model was 90%. (4) Conclusion: This is the first study in the literature that evaluated the performance of a FFBPN for the prediction of pregnant patients with thrombophilia at a high risk of giving birth to SGA newborns, and its promising results could lead to a tailored prenatal management.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献