Machine Learning Models for Prediction of Severe Pneumocystis carinii Pneumonia after Kidney Transplantation: A Single-Center Retrospective Study

Author:

Liu Yiting12,Qiu Tao12ORCID,Hu Haochong12,Kong Chenyang123,Zhang Yalong12,Wang Tianyu12,Zhou Jiangqiao12,Zou Jilin12

Affiliation:

1. Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China

2. Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China

3. Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

Background: The objective of this study was to formulate and validate a prognostic model for postoperative severe Pneumocystis carinii pneumonia (SPCP) in kidney transplant recipients utilizing machine learning algorithms, and to compare the performance of various models. Methods: Clinical manifestations and laboratory test results upon admission were gathered as variables for 88 patients who experienced PCP following kidney transplantation. The most discriminative variables were identified, and subsequently, Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), K-Nearest Neighbor (KNN), Light Gradient Boosting Machine (LGBM), and eXtreme Gradient Boosting (XGB) models were constructed. Finally, the models’ predictive capabilities were assessed through ROC curves, sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1-scores. The Shapley additive explanations (SHAP) algorithm was employed to elucidate the contributions of the most effective model’s variables. Results: Through lasso regression, five features—hemoglobin (Hb), Procalcitonin (PCT), C-reactive protein (CRP), progressive dyspnea, and Albumin (ALB)—were identified, and six machine learning models were developed using these variables after evaluating their correlation and multicollinearity. In the validation cohort, the RF model demonstrated the highest AUC (0.920 (0.810–1.000), F1-Score (0.8), accuracy (0.885), sensitivity (0.818), PPV (0.667), and NPV (0.913) among the six models, while the XGB and KNN models exhibited the highest specificity (0.909) among the six models. Notably, CRP exerted a significant influence on the models, as revealed by SHAP and feature importance rankings. Conclusions: Machine learning algorithms offer a viable approach for constructing prognostic models to predict the development of severe disease following PCP in kidney transplant recipients, with potential practical applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3